MIX Builder 98

by Bill Menees

Copyright © 1998 Bill Menees

bmenees@home.com

http://members.home.net/bmenees

System Requirements

	MIX Builder is a Win32 program that should run on any Windows 95, 98, or NT4 system. It may also run in some emulated Win32 environments, but I'm not sure about that. The only thing that is required is the MIXBuilder.exe file. For best viewing, MIX Builder needs a high-color display driver for showing faded background colors in the debugger. It should work on a 256-color system, but the colors won't look as good.

Overview

	MIX Builder is a MIXAL assembler and MIX simulator and debugger rolled into one. It is based on the mythical MIX machine defined in Donald Knuth's legendary The Art of Computer Programming series. See TAOCP sections 1.3.1 and 1.3.2 for in-depth information.

	Although the differences in MIX between editons of TAOCP are minor, MIX Builder is based on the 3rd edition of the text. Some of the subtle changes in the 3rd edition are two different characters in the character set and a dedicated device 20 for the paper tape. However, for the most part, MIX can be considered the same regardless of which edition of the book you're using.

Implementation Details

	I'm assuming that if you're reading this you're a programmer and you don't need simple things explained to you. So I'll only discuss a few non-obvious details of MIX Builder here.

	There's a new "register" in the CPU window for location counter: LC. You can edit this register in the IDE to change which instruction will be executed next, but you can't refer to the register explicitly in a program. Within a program, LC can only be changed by a jump operation or by being incremented after executing a non-jump instruction.

	When you change a memory location that corresponds to an assembled line of source, the debugger will indicate this by italicizing the text in that row. This is useful for determining if you're setting the J register correctly when calling subroutines and to tell if you're accidentally overwriting code with data.

	

	The CPU, Memory, and Devices windows can't be docked in the main window, but they can be set to stay on top of the main window. Typically, I layout my windows in a non-overlapping grid, with the main window (taking up most of the space) in the top left, the Devices in the bottom left, the CPU on the top right, and the Memory on the bottom right. An example of this layout can be seen in the screenshot on my web site.

Differences From The Standard

	This section lists implementation details that don't quite match the standard that Knuth defined. In most cases I did things the way I did because they made my life a whole lot easier. However, in one case (the MIX character set) I added things to the standard to make everyone's life easier and because Knuth did it himself in his MIX/360 implementation.

	Inserted Constants

	When you assemble your first program with literal constants or undefined symbols, you'll see that I insert the new CON operations after the END card instead of immediately before it as Knuth specified. This made things a little cleaner in the assembler code, and I couldn't think of a single reason not to do it. Because the END card doesn't assemble to an instruction, it shouldn't make any difference. If someone does think of a way that it could make a difference, I can always change it.

	Negative Zero

	Dealing with -0 really sucks because Intel's integer operations don't support it. As a concept, I hate the fact that MIX supports -0 even though it has instructions like CMP where -0 == +0. Also, when rA contains -0, what should the JAN instruction do? The MIX documentation doesn't discuss this case, so in my implementation, it doesn't jump. Other implementations may vary.

	Still, even though I hate it, I've tried to handle -0 in every case I could without extraordinary difficulty. I believe that the simulator handles it correctly now. However, the assembler won't handle it in all cases because I didn't want to rewrite major portions of the expression parser (which uses native Intel integers for calculations). One case I know that slips through is with ENTr. If the address evaluates to 0 with ENTr, it sets the instruction's sign based on the first character in the address expression. So ENTA -6+5+1 will evaluate to -0 correctly, but ENTA 5-6+1 will incorrectly evaluate to +0.

	If -0 truly equals +0 in every case maybe this isn't a big deal. If not, and if someone has actually written some MIX code that depends on -0 being handled correctly by the assembler, please let me know. I might be persuaded to fix it.

	MIX Character Set Differences

	The original MIX character set uses three non-ASCII characters (a couple of which changed between editions 2 and 3), but I'm following Knuth's lead (see the MIX/360 User's Guide) and making the following substitutions/additions:

		Code	Char	Description

		10	~ 	Tilde

		20	|	Vertical Bar

		21	_	Underscore

		56	"	Double Quote

		57	%	Percent

		58	&	Ampersand

		59	#	Number Sign

		60	¢	Cents

		61	!	Exclamation Point

		62	¬	Not Sign

		63	?	Question Mark

	With these changes, every MIX byte value corresponds to a valid MIX character. This makes device I/O a little easier for everyone, and gives the user a few more characters to use within comments.

	Floating Point Operations

	All seven MIX floating point operations are supported: FADD, FSUB, FMUL, FDIV, FCMP, FLOT, and FIX. Internally, floating point values are stored as Knuth defined. However, for the arithmetic operations and for the normalization routines, I didn't use straight implementations of his algorithms.

	I used the Log and Power functions in Delphi's standard Math library to determine the normalized form. For arithmetic operations I convert the numbers to Intel's native Double type, do the native Intel operation, and then convert the Double result back into MIX's floating point type. I get correct answers this way for the short sequences of operations I've tested, but I fear the round-off error potential during longer sequences caused by all these conversions. Either way, I'd love to hear an explanation of why this is good or bad way to do things. If it is terribly bad, I can change the behavior for the next version of MIX Builder.

	A final note about floating point operations is how equality is checked. FCMP checks for "approximately equal to" using an EPSILON value from memory location 0 as described in section 4.2.1.C. Since all of memory is cleared before each assembly, EPSILON will default to 0. If you're using FCMP, make sure you don't put any code or non-float data into location 0.

	GO Button

	Exercise 1.3.1.26 refers to a GO button that a MIX machine uses to load programs. MIX Builder has no GO button because it doesn't need it. In MIX terms, the program is assembled in an external device and written into MIX memory through a dedicated high-speed DMA transfer. Because of this there are no reserved locations in memory. You're free to assemble your programs into any memory location you like.

Speed

	MIX Builder was coded for clarity and safety over efficiency. Internally, the architecture of the program is a clean, object-oriented design with numerous safety checks at every stage. Primarily this helped me as an author deliver a stable, relatively bug-free product in a reasonable amount of time. However, it has implications for the end-user too.

	Typically, assemblers and simulators are written in assembly language or tight C code just to make them fast and efficient. Since I had other design goals, MIX Builder isn't the fastest, most optimized simulator you'll ever see. However, it does have some very nice interactive debugging facilities and tons of compile-time and run-time safety checks that make up for its lack of super-speed. Also, on my Pentium Pro 200, things run fast enough considering it's emulating a 60's era computer that just runs batch jobs.

	On my machine, MIX Builder executes 100000 instructions in 41 seconds when running Timing.mix, and it executes 11849 instructions in 5.5 seconds with Mystery.mix. This gives an average of about 2300 instructions per second. This isn't so bad when you consider all the tracing and checking going on internally. However, it doesn't seem so good when you contrast it with Knuth's MIX/360 simulator written in 1971 entirely in assembly language. With no tracing turned on, MIX/360 could execute 10000 instructions per second. Of course, Knuth is basically the God of Optimization, and he was working with Richard Sites (an architect for the Digital Alpha chip).

	While I'll certainly keep my eyes open for ways to optimize MIX Builder, I'm not going to stress over it. I feel like I met my design goals well (clarity and safety) and the speed is acceptable to me. If it's really too slow for some MIX task you're working on, just buy a faster computer. If you can't do that, let me know, and you might be able to convince me to try to speed things up some more.

Errors

	MIX Builder has lots of assembler and simulator error checking. This is primarily to help you write safe, effective MIX code, but it also keeps things consistent internally. I don't like simulators that just accept bad input and keeping running until something catastrophic happens.

	The file MIXErrors.txt is a relatively unmodified list of all the errors and warnings that MIX Builder will handle. I say "relatively unmodified" because I basically just searched and copied them straight out of the source code.

Instructions

	MIX Builder supports the 157 MIX instructions listed in Volumes 1 and 2 of TAOCP. This includes all of the floating point instructions described in section 4.2.1, as well as the binary and parity instructions (e.g. SLB and JAE) described in section 4.5.2. The complete list is contained in the file MIXInstructions.txt. If there are any others that I've missed, please let me know, and tell me where they are mentioned. I'll do my best to get them in the next version.

Devices

	MIX Builder currently only emulates devices 16-20: the card reader, card punch, line printer, typewriter, and paper tape. Since each of these devices is a character mode device, binary input and output can be a bit tedious. However, binary I/O is possible because in this MIX implementation every byte value corresponds to a valid MIX character. (See MIX Character Set Differences above.)

	On the Devices window, each implemented MIX device has its own multiline text edit control where you can input or get output depending on the device. Each line in the edit control corresponds to one block. So for the card reader, with a block size of 16 words, 80 characters will be read in from a line during every IN (16) operation. This is because 5 characters per word times 16 words equals 80 characters. If a line is too short, trailing blanks are assumed. If a line is too long, characters past the anticipated end are ignored.

	Resetting

	For input devices 16, 19, and 20, blocks/lines are removed from the edit control as they are read in (similar to what happens as a card is read from a card deck). However, you can reset this input a couple of ways. Programmatically, you can execute the instruction IOC 0(N) where N = 16, 19, or 20. This control instruction is already documented as Rewind for device 20, so I just added support for it to devices 16 and 19 as well. Also, from within the IDE, you can reset the devices any time you're in the debugger by clicking Reset Devices on the Run menu. Finally, you can have this reset done for you automatically by checking Reset Devices Before Run on the Options dialog.

	Not Ready State

	In the IDE, devices indicate a non-ready state by setting the icon on their device tab to a red circle with a line drawn through it. Also, the memory cells the device has locked will be drawn with a light gray background. When the device becomes ready again, the tab icon and memory cells will return to their normal display.

	Limitations

	Because Windows 95 and 98 are still based at least partially on MS-DOS, they still have some 16-bit segment size limitations. This is nowhere more apparent that in the multiline edit control. Under Windows 95 and 98, the multiline edit control can only hold about 32K of text at a time. If you exceed this threshold, you'll get a runtime error and your program will stop.

	If you have any MIX programs that are larger than 32K or you have any device input or output larger than this, you'll have to run MIX Builder on Windows NT to get the correct behavior. If this happens to you, please let me know, and I'll consider using the Windows Rich Edit control in the next version of MIX Builder (because the Rich Edit control doesn't have this limitation).

Mythical Version 2 Features

	I have several ideas for the mythical next version of MIX Builder, but, like Knuth, I reserve the right to take a long time between versions. I base my decision to work on one project or another partially on my needs and partially on the amount and quality of feedback I get from users. So if I get lots of input from users suggesting really cool features, I'll be more likely to implement them.

	Some ideas I currently have (in no particular order of importance) are:

A Watch window for watching discontiguous memory locations

Print and Print Preview

Find and Replace

Implement Devices 0 through 15

Speed things up

Improve floating point compatibility

Change multiline edit controls to rich edit controls

Add any instructions I've missed

Other Resources

	Obviously, the primary source for MIX information is Knuth's TAOCP series. However, a little more MIX information can be found in a paper Knuth and Sites wrote about their MIX/360 simulator. The paper is STAN-CS-71-197 dated March 1971, which you can find on Stanford's web site. Finally, there's a little about MIX and its successor MMIX on Knuth's home page at http://www-cs-staff.stanford.edu/~knuth/index.html.

Build Instructions

	For those few souls brave enough, I've provided the source to MIX Builder on my web site. To build it you'll also need to download the TFormSave, TMEditor, TNumEdit, TSortGrid, and TWinSplit components from my Delphi Components page. MIX Builder only compiles with Borland's Delphi 4 or later. It makes use of several Object Pascal features that were introduced in Delphi 4: default arguments, 32-bit unsigned integers, Int64, dynamic arrays, control bars, action lists, menu item bitmaps, and several other neat things.

	The main classes you'll encounter in MIX Builder are roughly divided into four categories: Forms, Exceptions, Assembler classes, and Simulator classes. The forms just encapsulate the interface logic and make calls into instances of the other classes. The two exception classes, EMIXCompileError and EMIXRTError, are thrown during assembly and simulation respectively.

	The assembler classes are: TASMAddress, TASMLexicon, TASMParser, TASMToken, TASMTokenList, and TMIXAssembler. The simulator classes are: TMIXCPU, TMIXDevice, TMIXIndex, TMIXInstruction, TMIXInstructionList, TMIXMachine, TMIXMemory, TMIXMemoryCell, TMIXProgram, and TMIXWord.

Disclaimer

	This software is provided AS IS without warranty of any kind, either expressed or implied. The entire risk as to the quality and performance of the program is with you. Should the program prove defective, you assume the cost of all necessary servicing, repair, or correction. In no event shall the author, copyright holder, or any other party who may redistribute the software be liable to you for damages, including any general, special, incidental, or consequential damages arising out of the use or inability to use the program (including, but not limited to, loss of data, data being rendered inaccurate, loss of business profits, loss of business information, business interruptions, loss sustained by you or third parties, or a failure of the program to operate with any other programs), even if the author, copyright holder, or other party has been advised of the possibility of such damages.

