	[image: image1.png]R

Mences
VS Tools

	MeneesVSTools Visual Studio Add-In

Copyright © 2002 - 2007 – Bill Menees – Bill@Menees.com
http://www.menees.com/

About MeneesVSTools

Registration
Options

Installation
Revision History

Commands
License Agreement

About MeneesVSTools

MeneesVSTools is an add-in for Visual Studio. It adds several new commands to process selected text (e.g. sort, trim, statistics, check spelling) or add new text (e.g. generate prime, generate GUID). It also provides commands for launching the active document in its associated program (e.g. executing an open .vbs file) as well as toggling between .cpp and .h files.

I wrote MeneesVSTools in March and April of 2002 to duplicate the functionality of my earlier MeneesVCTools add-in for Visual C++ 6. Although the Visual Studio automation model is dramatically better than VC6’s, Microsoft made them fairly incompatible. So I started from scratch on MeneesVSTools rather than trying to port my old MeneesVCTools code. That also gave me a chance to do everything in C# rather than C++.

I left out some of the VCTools commands (i.e. Cut/Copy/Paste to Buffer) because equivalent functionality was already provided by Visual Studio. But I added some new commands (i.e. Toggle Files, Close All Except, and Toggle Read-Only) to replace functionality that I missed from the excellent WndTabs add-in for VC6.

MeneesVSTools comes with the source code, so it is a good example if you’re interested in writing add-ins for Visual Studio. I started from a project generated by the VisualStudio Add-In Wizard, but then I changed several things to make my life easier. I was disappointed by how bad the automation samples were and by how much I had to figure out on my own. Hopefully, this add-in will be a better example than the ones Microsoft provided.

Registration

MeneesVSTools isn’t freeware. It is “charity ware”. I don’t want to receive any money for it, but if you use it regularly, I’d like for you to make at least a $5 donation to some worthwhile charity.

I’ll never know if you don’t follow this “registration” policy, but the negative karma from illegally using this software will be far worse than giving $5 to help someone else out. And if you do follow this policy, the good karma you accumulate will be much better than anything else you could get for $5.

By “worthwhile charity” I mean a charity that helps other people, animals, or life in general. This can be your church, your local pet shelter, a save-the-planet foundation, etc. Anything that applies compassion and loving-kindness with wisdom toward the benefit of other beings and life will do fine.

There are opportunities to do this all around you. In addition to the big-name charities and organizations (e.g. United Way, Salvation Army, Greenpeace, etc.), at almost every convenience store, fast food restaurant, etc. there are donation baskets for some good cause.

Please don’t forget about this or blow it off because there are no nag screens. I wrote MeneesVSTools to help everyone out, and all I ask is that you return the favor by helping someone else out. Thanks!

Installation

The MeneesVSTools.Zip file must be unzipped with the directory structure intact. To install the MeneesVSTools add-in, shutdown Visual Studio and run the Setup.bat batch file included with the MeneesVSTools distribution. It will deploy the add-in DLL to the appropriate location.

Uninstallation

In Visual Studio, go to Tools (Add-in Manager, uncheck MeneesVSTools as an available add-in, and then shutdown Visual Studio. Run the Uninstall.bat batch file included with the MeneesVSTools distribution.

Commands

The commands are listed in the order they are displayed on the default toolbar. Most of the commands require an active text document to be open, and many require text to be selected. These commands can be invoked from the Visual Studio command window by prefixing the name with “Menees.VSTools.”.

	Command
	Description

	Sort
	This sorts the selected text. The default is a case-sensitive ascending sort, but these options can be changed on the dialog that is displayed.

Sorting by ordinal works like C’s strcmp method. When not comparing by ordinal, .NET will use the collation and culture settings for the current locale. This does a “word sort” like the CompareString() Windows API call.

	Trim
	This trims the whitespace from the selected text. By default this only trims the whitespace on the right side of the lines (i.e. the trailing whitespace), but this can be changed on the dialog that is displayed.

	Statistics
	This displays the character and line counts as well as a breakdown of how many occurrences of each character there were in the selected text. This is useful for determining selection length as well as finding the character codes for specific characters.

	StreamText
	This removes hard linebreaks from the selected text. It also removes leading ‘>’ characters, which are often inserted in emails and newsgroup postings when they have been replied to.

	Comment
	Comments the selected text. This is similar to the IDE’s Edit.CommentSelection command, but it can also comment HTML, XML, JScript, VB, VBScript, and SQL.

	Uncomment
	Uncomments the selected text. This is similar to the IDE’s Edit.UncommentSelection command, but it can also uncomment HTML, XML, JScript, VB, VBScript, and SQL.

	CheckSpelling
	This uses Microsoft Word to interactively spell check the selected text. Grammar checking is off by default because Word usually interprets text with hard linebreaks as sentence fragments. A global option can be set to force grammar checking.

	RunText
	This executes the selected text exactly as if you had typed it in the Windows’ Run dialog. This is useful for launching selected filenames or URLs in their associated programs.

	ExecuteFile
	This launches the active document using its associated program. This is useful when you are editing a VBScript or JScript file and want to run it. It is also useful when you’re editing an HTML file and want to launch it in the browser.

	GeneratePrime
	This generates a prime number greater than or equal to a given value. This is useful for working with MFC’s CMap classes. Because they are hash-table-based maps, you should always call InitHashTable with a prime number about 20 percent larger than the largest number of elements you expect to put in the map.

	GenerateGUID
	This generates a new GUID in the format needed in the uuid attributes in IDL files. This is useful when you need to change the GUID on an interface or class and you don’t want to have to run Microsoft’s GUIDGen utility, copy the result to the clipboard, paste the result into the IDL file, and delete the surrounding curly braces.

	ToggleFiles
	Switches between a C++ header file (.h, .tlh, .hpp, .hxx, .hh) and its implementation file (.cpp, .c, .inl, .tli, .cxx, .cc). For a C# or Visual Basic form, it switches between the code and designer views. For an HTML or XML document, it switches between the source and design views.

For C++ files, the open documents are searched first. If no match is found in the open documents, then the associated file is looked for in the active document’s directory. If no match is found there, then the associated file is searched for in the additional C++ search directories specified on the Options dialog.

	CloseAllExcept
	Closes all open documents except the active document.

	ToggleReadOnly
	Toggles the active file’s read-only attribute on and off.

Options

MeneesVSTools is configured through the Visual Studio Options dialog. Go to Tools (Options, and MeneesVSTools should be listed as one of the Options categories.

· Only show Sort dialog when Shift is pressed – If this is checked then the Sort command won’t display its dialog unless the Shift key is down when the command is invoked. If the dialog isn’t displayed, then the sorting will be done using whatever Sort options were in effect the last time the Sort dialog was displayed. This option can also be changed from the Sort dialog.

· Only show Trim dialog when Shift is pressed – If this is checked then the Trim command won’t display its dialog unless the Shift key is down when the command is invoked. If the dialog isn’t displayed, then the trimming will be done using whatever Trim options were in effect the last time the Trim dialog was displayed. This option can also be changed from the Trim dialog.

· Save all files before ExecuteFile – If this is checked then all the open documents will be saved before the ExecuteFile command executes the active document. If this is unchecked then only the active document will be saved before ExecuteFile. This is on by default.
· Check grammar with spelling – If this is checked, then Word will try to check your grammar as well as your spelling when the CheckSpelling command is used. Grammar checking is off by default because Word usually interprets text with hard linebreaks as sentence fragments.
· Show command warning messages – If this is checked then warning messages will be displayed in a MessageBox if a command is invoked when it isn’t available. If this is unchecked then warnings won’t be displayed. This is on by default.
· Use multi-line comment if language supports it – If this is checked then the Comment and Uncomment commands will default to using multi-line comments (i.e. /* */) instead of single-line comments (i.e. // or --) for C, C++, C#, JScript, IDL, ODL, and SQL.
· Additional C++ Search Directories For ToggleFiles – This provides a way to specify global search directories for ToggleFiles when it is toggling between C++ files. The list of directories should be separated by commas or semicolons.
I added this option instead of using the current Solution’s paths or the environment’s paths because I want ToggleFiles to work even when no solution is open, and I don’t like adding things to the environment’s global paths. Having this option also keeps the search list smaller than using the global paths.
Revision History

	Version
	Date
	Description

	0.0
	3/11/02
	Generated initial version. Spent hours separating the connection and commands classes, making it gracefully handle being reregistered, and figuring out how to install it all by hand (i.e. without the Setup project).

	0.9
	4/14/02
	Beta 1 released.

	0.95
	4/21/02
	Beta 2 released. Updated ToggleFiles to switch between code and designer for C# and VB forms as well as HTML and XML documents.

Added the ability to sort by ordinal. The String.Compare method always uses culture info, so it doesn’t behave like C’s strcmp method. To get that you have to use String.CompareOrdinal.

Changed SetText to use Delete & Insert instead of setting the Text property directly. Setting the Text property acts like multiple line inserts and the doc type’s auto-indent could really hose things up.

	0.96
	4/23/02
	Updated the bitmaps to have a transparent background color. The VS.NET docs incorrectly said to use #00FF00, but you actually have to change the palette and use #00FE00 (almost pure green).

	0.97
	4/26/02
	Removed the standalone MeneesVSTools Options dialog and replaced it with an Options control that integrates into VS.NET’s Options dialog.

	0.98
	4/27/02
	Combined the Resources and Options DLLs into a single C++ DLL.

	0.99
	4/28/02
	Added the Comment and Uncomment commands because I discovered that the IDE’s similar commands didn’t work in a variety of languages I use (e.g. VBScript and JScript).

	1.0
	5/7/02
	Improved the exception reporting and fixed a bug with CloseAllExcept when code and designer were both open for a document.

I decided to call this 1.0 because I’ve used it over a week at work and only found one bug.

	1.0.1
	5/8/02
	Added the additional C++ search directories for ToggleFiles (on the Options dialog).

Changed CloseAllExcept to close non-dockable windows such as the Start Page and the Object Browser in addition to document windows. This makes it more like the IDE’s Window.CloseAllDocuments command.

Now the selection is retained for most commands that change the selected text. This is helpful if you’re going to apply multiple operations (e.g. Uncomment and then Sort) to the current selection.

Documented the Options dialog

	1.0.2
	5/9/02
	Updated ToggleFiles to match open C++ files by name without using the path. That way if an implementation file and header file are in different directories but both open, then you can toggle between them.

Changed GeneratePrime to default the input value to the selected text if it converts to an int. Otherwise it defaults to blank.

Added the version number to the Options dialog.

	1.0.3
	5/12/02
	In ExecuteFile, I worked around a bug in VS.NET 1.0’s Documents.SaveAll() method. On a read-only document, SaveAll() will mark it in-memory as not read-only, and it will set its Saved property to false. This causes any subsequent Save to throw an exception, and you get prompted to save the file when you close it. Now I manually iterate through the documents and call Save.

	1.0.4
	5/20/02
	Found a much easier way to get the version info for an assembly.

	1.0.5
	11/28/02
	Added an "Eliminate Duplicates" option to the Sort command.

	1.0.6
	12/7/02
	Added registry entries to support VS.NET 2003.

	1.0.7
	5/28/03
	Rebuilt with VS.NET 2003 to use .NET 1.1.

	1.0.8
	9/7/03
	Rebuilt to use Office XP’s type libraries instead of Office 97’s.

	1.0.9
	4/24/05
	Strongly named the DLLs and increased the version number to avoid weird COM registration problems I discovered when I moved the source tree on my hard disk. I was auto-generating the revision field and had version numbers like 1.0.8.14590, but if I built a new version of that DLL, it might get a number less than the old one. Since .NET COM DLLs store multiple codebases, .NET would try to load the old one even if its path no longer existed!

	2005 v1.0.0 Beta
	5/1/05
	Rebuilt with Visual Studio 2005 Beta 2 and updated it to use the new .addin registration file support. Brached the project and reset the version number because the new project structure is so different from the previous version.

	2005 v1.0.0
	10/30/05
	Rebuilt with the final release of Visual Studio 2005.

	2005 v.1.1.0
	3/12/07
	Added the Base Converter tool window.

	2008 v1.0.0 Beta
	11/18/07
	Rebuilt with Visual Studio 2008. This version should work in both VS 2008 and VS 2005.

License Agreement

What follows is a lot of legalese that I feel is unfortunately necessary to protect myself in this litigious age. In practice I’m not as legally anal as this might make me seem. My goal is to help people out with this utility, not to keep lawyers and courts tied up.

This agreement states my legal intentions, and you must accept it before using the software. However, if you have a need to use the software in a manner that is not in compliance with this agreement, please feel free to ask for my permission. I’m very willing to relax these restrictions for a good cause, but you’ll need to get my permission in writing before using the product or anything covered by this agreement in any manner that doesn’t comply with this agreement.

Copyright

All title, copyrights, and intellectual property rights in and to MeneesVSTools as well as the accompanying documentation, source code, text, and images are owned by Bill Menees.

No Warranties

MeneesVSTools is provided AS IS without warranty of any kind, either expressed or implied. The entire risk as to the quality and performance of the product is with you. Should the product prove defective, you assume the cost of all-necessary servicing, repair, or correction. To the maximum extent permitted by applicable law, Bill Menees disclaims all warranties and conditions, either express or implied, including, but not limited to, implied warranties of merchantability, fitness for a particular purpose, title, and non-infringement, with regard to MeneesVSTools, and the provision of or failure to provide Support Services.

Limitation Of Liability

To the maximum extent permitted by applicable law, in no event shall Bill Menees be liable for any special, incidental, indirect, or consequential damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information, data being rendered inaccurate, loss sustained by you or third parties, a failure of the program to operate with any other programs, or any other pecuniary loss) arising out of the use of or inability to use MeneesVSTools or the provision of or failure to provide Support Services, even if Bill Menees has been advised of the possibility of such damages. In any case, Bill Menees' entire liability under any provision of this license agreement shall be limited to U.S.$5.00. Because some states and jurisdictions do not allow the exclusion or limitation of liability, the above limitation may not apply to you.

